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Single-cell analysis reveals a stem-cell program in
human metastatic breast cancer cells
Devon A. Lawson1{, Nirav R. Bhakta2, Kai Kessenbrock1,3{, Karin D. Prummel1{, Ying Yu1, Ken Takai1{, Alicia Zhou3, Henok Eyob3,
Sanjeev Balakrishnan3, Chih-Yang Wang1,4, Paul Yaswen5, Andrei Goga2,3 & Zena Werb1

Despite major advances in understanding the molecular and gen-
etic basis of cancer, metastasis remains the cause of .90% of can-
cer-related mortality1. Understanding metastasis initiation and
progression is critical to developing new therapeutic strategies to
treat and prevent metastatic disease. Prevailing theories hypothes-
ize that metastases are seeded by rare tumour cells with unique
properties, which may function like stem cells in their ability to
initiate and propagate metastatic tumours2–5. However, the iden-
tity of metastasis-initiating cells in human breast cancer remains
elusive, and whether metastases are hierarchically organized is
unknown2. Here we show at the single-cell level that early stage
metastatic cells possess a distinct stem-like gene expression sig-
nature. To identify and isolate metastatic cells from patient-
derived xenograft models of human breast cancer, we developed
a highly sensitive fluorescence-activated cell sorting (FACS)-based
assay, which allowed us to enumerate metastatic cells in mouse
peripheral tissues. We compared gene signatures in metastatic cells
from tissues with low versus high metastatic burden. Metastatic
cells from low-burden tissues were distinct owing to their increased
expression of stem cell, epithelial-to-mesenchymal transition, pro-
survival, and dormancy-associated genes. By contrast, metastatic
cells from high-burden tissues were similar to primary tumour
cells, which were more heterogeneous and expressed higher levels
of luminal differentiation genes. Transplantation of stem-like
metastatic cells from low-burden tissues showed that they have
considerable tumour-initiating capacity, and can differentiate to
produce luminal-like cancer cells. Progression to high metastatic
burden was associated with increased proliferation and MYC
expression, which could be attenuated by treatment with cyclin-
dependent kinase (CDK) inhibitors. These findings support a hier-
archical model for metastasis, in which metastases are initiated by
stem-like cells that proliferate and differentiate to produce
advanced metastatic disease.

To investigate differentiation in metastatic cells, we used a micro-
fluidics-based platform (Fluidigm) for multiplex gene expression ana-
lysis in individual cells. This facilitated a systems-level approach to
study the simultaneous expression of groups of genes and resolve
cellular diversity during breast cancer metastasis only achievable at
the single-cell level. We designed single-cell experiments to investigate
116 genes involved in stemness, pluripotency, epithelial-to-mesench-
ymal transition (EMT), mammary lineage specification, dormancy,
cell cycle and proliferation (Supplementary Table 1)6–10.

We first developed a single-cell gene expression signature from
normal human breast epithelium to generate a reference for analysing
differentiation in metastatic cells. The breast contains two epithelial
lineages: the basal/myoepithelial lineage that contains stem cells, and a
luminal lineage that contains progenitor and mature cell populations.
We sorted single basal/stem, luminal, and luminal progenitor cells

from reduction mammoplasty samples from three individuals, and
processed them according to established protocols (Fig. 1a)10–13.
Principal component analysis (PCA) and unsupervised hierarchical
clustering showed that basal and luminal cells represent distinct popula-
tions in each individual, as expected (Fig. 1b, d). Forty-nine of the one-
hundred and sixteen genes tested showed differential expression between
basal/stem and luminal cells, and were used to generate a 49-gene dif-
ferentiation signature. This signature included established lineage-
specific genes such as KRT5, TP63, MUC1, CD24 and GATA3 (Fig. 1c, d,
Supplementary Table 2 and Supplementary Data 1), validating our
multiplex quantitative polymerase chain reaction (qPCR) approach.

Mice from three genetically distinct triple-negative (ER2PR2HER22),
basal-like patient-derived xenograft (PDX) models (HCI-001, HCI-002
and HCI-010) were analysed (Extended Data Table 1)14. We focused on
this subtype since it is the most aggressive, metastasis is frequent, and
there are no targeted therapeutics to treat it15. These PDX models main-
tain the essential properties of the original patient tumours, including
metastatic tropism, making them authentic experimental systems for
studying human cancer metastasis14.

To isolate metastatic cells from PDX mice, we first developed a
highly sensitive, species-specific FACS-based assay. We annotated
published microarray data to identify cell surface genes highly
expressed in PDX breast cancer cells14. This revealed as a top candidate
CD298 (also known as ATP1B3), which is a b-subunit of the Na1/K1

ATPases that are essential for basic cellular function16. Using a human
species-specific antibody, we found that CD298 is expressed by
.99.9% of cells in three different human mammary cell lines, with
no background in mouse lines or control mouse peripheral tissues
(Fig. 2b and Extended Data Fig. 1a, b). In dissociated PDX primary
tumours, all cells either expressed human CD298 or mouse major
histocompatibility complex class I (MHC I), indicating that CD298
could detect nearly all cells (.99.5%) that were not of mouse origin
(Fig. 2a). We therefore expected that this assay would capture the
majority of metastatic cells in PDX mice, with negligible false-positive
rates. CD298 was also superior to commonly used markers, such as
human EpCAM, CD24 and MHC I (Extended Data Fig. 1c).

We detected metastatic cells in peripheral tissues of 70/100 (70%) PDX
mice using this assay, including the lung, lymph node, bone marrow,
liver, brain and peripheral blood (Extended Data Table 1). All animals
were analysed when their primary tumour reached 20–25 mm in dia-
meter, and primary tumour growth kinetics were consistent within each
model (Extended Data Fig. 2a–d). Although animals were analysed at the
same endpoint, we observed variation in metastatic burden by FACS and
histology (Fig. 2b, c). We exploited this to investigate gene expression in
advanced-stage metastatic disease (high burden) versus earlier-stage
metastatic disease (low burden). In total we analysed over 20 mice, and
show comprehensive analysis of 441 metastatic and 523 primary tumour
cells from 12 animals. The tissues were rank ordered by burden, from
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lowest (light grey) to highest (black) (Extended Data Fig. 2e). Circulating
tumour cells (CTCs) in the blood, and disseminated tumour cells (DTCs)
in the bone marrow were not included in the ranking since overt meta-
stasis was never observed in these tissues.

Remarkably, PCA plots for individual animals showed that in tis-
sues with low burden, metastatic cells were very distinct from the
primary tumour cells they were derived from (Fig. 3a). By contrast,
metastatic cells from higher burden animals were more similar to
primary tumour cells. This was also observed by unsupervised hier-
archical clustering of pooled cells from all animals, which showed that
low-burden metastatic cells form a unique cluster, while higher-bur-
den metastatic cells cluster with primary tumour cells (Extended Data
Fig. 3a). Most strikingly, we found that this was due to a conserved
basal/stem-cell signature in low-burden metastatic cells across all ani-
mals and models. Analysis of genes comprising the 49-gene differenti-
ation signature showed that low-burden metastatic cells expressed
higher levels of 22 basal/stem-cell genes, including LGR5, BMI1,
BCL2, NOTCH4 and JAG1, and lower levels of seven luminal genes,
such as MUC1, EMP1 and CD24 (Fig. 3b). Focusing on clustering of
only the metastatic cells (Fig. 3c), we discovered considerable hetero-
geneity in differentiation, which directly correlated with metastatic
burden. Akin to the normal mammary gland, metastatic cells orga-
nized into two distinct clusters, where low-burden metastatic cells
were most basal/stem-like, and higher-burden metastatic cells pos-
sessed a spectrum of progressively more luminal-like expression pat-
terns. This was also observed when lung metastatic cells from each
PDX model were analysed separately (Extended Data Fig. 4a and
Supplementary Data 2), indicating that it is a conserved phenomenon
in each model. Some differences in gene expression were observed
between lung metastatic cells from different patient models, but they
were not sufficient to cluster cells separately by PDX model (Extended
Data Fig. 4c, d and Supplementary Data 3).

To investigate heterogeneity at the protein level, we performed
immunostaining for KRT5 (basal) and MUC1 (luminal) (Extended
Data Fig. 4e). Tumour cells found in micrometastases from low-bur-
den tissues were largely KRT51 (95.8%) and MUC12 (94.3%), while
cells from high-burden tissues were heterogeneous for KRT5 and lar-
gely MUC11 (72.9%). This suggests that differentiation status also
correlates with metastatic burden at the protein level.

By single-cell analysis, low-burden metastatic cells expressed very
high levels of the pluripotency genes POU5F1 (also known as OCT4)
and SOX2, suggesting that they may exploit embryonic programs for
self-renewal and maintenance (Fig. 3b). Low-burden metastatic cells
also expressed higher levels of typical EMT markers such as SNAI2,
SKP2 and TWIST1, and lower levels of CDH1, which was observed in
normal basal/stem cells (with the exception of TWIST1) (Fig. 3b and
Extended Data Table 2). This is consistent with previous reports show-
ing that EMT promotes stemness in the mammary gland, and suggests
that low-burden metastatic cells may utilize an EMT program to facil-
itate dissemination17,18. Gene ontology enrichment revealed that genes
involved in the DNA damage response, chromatin modification, dif-
ferentiation, apoptosis and the cell cycle were differentially expressed
in low-burden metastatic cells (Supplementary Data 4). Extended Data
Table 2 and Supplementary Data 5 list all 55 genes (of 116 analysed)
that were differentially expressed in low-burden metastatic cells.

The heterogeneity observed in metastatic cells raised the question of
whether stem-like metastatic cells directly give rise to luminal-like
cells, or whether they originate from distinct founder cells. To test first
whether cells that disseminate at early phases of primary tumour
growth can produce luminal-like metastatic cells, we resected primary
tumours when they were only 10–12 mm in diameter and allowed
metastases to grow for 8 weeks. Single-cell analysis of the resulting
lung metastatic cells showed that 85.4% were luminal-like, and clus-
tered with high-burden metastatic cells from previous experiments
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Figure 1 | Single-cell analysis of normal human
mammary epithelial cells. a, FACS plots
show basal/stem (Lin2CD49f hiEpCAMlocKit2,
blue), luminal (Lin2CD49f loEpCAMhicKit2,
yellow), and luminal progenitor (Lin2CD49f med

EpCAMmedcKit1, red) cells from a representative
mammoplasty patient. Lin 5 CD45/CD31.
b, PCA plots show distinct cell populations
identified in three patients. PC, principal
component. c, Bar graph shows the 49 of 116 genes
that were significantly (P , 0.05) differentially
expressed between the populations. P values and
fold change are listed in Supplementary
Table 2. B, basal/stem; LP, luminal progenitor;
L, luminal. d, Heatmap and dendrogram show
unsupervised hierarchical clustering of individual
cells and genes from the 49-gene signature that
were run on all arrays.
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(Extended Data Fig. 4b). This suggests that luminal-like metastases can
derive from cells that disseminate at earlier stages of primary tumour
growth.

To test the growth and differentiation capacity of stem-like meta-
static cells directly, we transplanted low-burden metastatic cells into
mammary glands. Remarkably, two of four transplants produced large
tumours (Extended Data Fig. 5a), by contrast with primary tumour
cells, which did not produce tumours even at 100-fold higher numbers.
This is consistent with previous reports indicating that PDX tumours
are more efficiently propagated as fragments than dissociated cells19.
Single-cell analysis of the resulting tumour cells showed that 98.7% of
them were luminal-like, and clustered with primary tumour cells and
high-burden metastatic cells from previous experiments (Extended
Data Fig. 5b). This suggests that low-burden metastatic cells have
considerable tumour-initiating capacity, and can give rise to lumi-
nal-like tumour cells, supporting the hypothesis that stem-like meta-
static cells give rise to luminal-like ones.

A compelling question raised in this study is whether stem-like cells
are present in primary tumours, or whether they evolve later through
interaction with their new microenvironment. Unsupervised hierarch-
ical clustering shows that 1.4% of primary tumour cells cluster with
low-burden metastatic cells and possess a basal/stem-like phenotype
(Extended Data Fig. 3a). This is consistent with previous findings that
rare invasive ‘leader’ cells on the periphery of primary tumours express
basal cell markers20. Interestingly, the most metastatic PDX model
(HCI-010) had the highest percentage of basal/stem-like primary
tumour cells, while the least metastatic model (HCI-002) had the low-

est. This suggests that primary tumours contain a rare subpopulation
of stem-like cells, and that the percentage correlates with metastatic
potential. This led us to investigate whether enrichment of this stem-
like signature in primary tumours may be predictive of distant meta-
stasis in human patient data sets. By Kaplan–Meier analysis, we found
that 16 of 55 genes associated with stem-like metastatic cells were
significantly prognostic (Supplementary Data 6). Future studies to
determine whether the frequency of stem-like cells in primary tumours
can be used as a predictive biomarker for metastasis may be clinically
valuable.

Previous work has shown that metastatic cells in different organs
display distinct gene expression signatures2. Consistent with this, by
supervised clustering of cells by target organ, we found that metastatic
cells in the brain, bone marrow and peripheral blood displayed distinct
gene expression patterns (Extended Data Fig. 6a). Brain metastatic
cells were the most distinct, and expressed the highest levels of stem
cell, quiescence and anti-apoptosis genes. In total, 80 genes were sig-
nificantly differentially expressed between the populations (Extended
Data Fig. 6b, Supplementary Table 3 and Supplementary Data 7).

CTCs are of particular clinical interest for use as a ‘liquid biopsy’ for
diagnosis and prognosis. Although only rare CTCs could be recovered,
they most closely resembled lung metastatic cells, and were least sim-
ilar to brain metastatic cells (Extended Data Fig. 6c). Interestingly,
most CTCs and bone marrow DTCs clustered with ‘intermediate’
metastatic cells, which may be because the cells were harvested from
animals with intermediate burden (Extended Data Fig. 2e). However,
16.7% and 10.7%, respectively, showed a more basal/stem-like
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signature (Fig. 3c, basal/stem-like cluster), suggesting that these stem-
like cells may represent the true metastatic seeder cells.

We also observed a shift towards a more proliferative signature assoc-
iated with increased metastatic burden. Low-burden metastatic cells
expressed higher levels of quiescence and dormancy-associated genes,
including CDKN1B, CHEK1, TGFBR3 and TGFB2 (Fig. 4a, b)21,22.
Higher-burden metastatic cells appeared to enter the cell cycle, expres-
sing lower levels of quiescence and dormancy-associated genes and
higher levels of cell-cycle-promoting genes such as MYC and CDK2, as
well as MMP1 and CD24, which have been associated with reactivation
after dormancy. This distinction was further corroborated by unsuper-
vised hierarchical clustering, showing that low- and high-burden meta-
static cells form distinct clusters based on differential expression of these
genes (Fig. 4c). Of note, the majority of metastatic cells in the dormant
cluster were also in the basal/stem-cell cluster depicted in Fig. 3c, dem-
onstrating a correlation between dormancy and stem-cell-related gene
expression in metastatic cells. We also detected primary tumour cells
(22.2%) with this less-proliferative signature (Extended Data Fig. 3b).
Immunostaining for MYC, phospho-histone H3 and Ki67 confirmed
that micrometastases show lower MYC expression and proliferative
index (Fig. 4d and Extended Data Fig. 7a, b).

These findings prompted us to test whether blocking this switch
from dormancy into the cell cycle could inhibit metastatic progression.
Since we observed high levels of both MYC and CDK2 in more
advanced stage metastatic cells (Fig. 4b), we chose to test dinaciclib,
a CDK inhibitor that has been shown to induce apoptosis in high
MYC-expressing cancer cells via synthetic lethality23,24. We hypothe-
sized that apoptosis would be induced in metastatic cells transitioning
into proliferation, since they appear to upregulate MYC. We adminis-
tered dinaciclib to a total of 49 mice from two PDX models, HCI-001
and HCI-002, which were from drug-naive patients. After a 4-week
treatment course, we found that only 1 of 24 drug-treated animals
displayed metastatic cells, in comparison to 44% (11/25) of vehicle-
treated mice (Fig. 4e). Although tumour growth was delayed in drug-
treated animals, many developed sizeable tumours by the endpoint,
suggesting that the effect was not simply due to inhibition of the
primary tumour (Extended Data Fig. 7c–e). By looking in high reso-
lution at gene expression in single metastatic cells, we have uncovered
previously unrealized diversity in differentiation and gene expression
relating to the metastatic stage (Extended Data Fig. 8), and dem-
onstrate that this approach can facilitate the identification of new
potential drug targets with efficacy against metastatic disease.

Online Content Methods, along with any additional Extended Data display items
andSourceData, are available in the online version of the paper; references unique
to these sections appear only in the online paper.
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2. Oskarsson, T., Batlle, E. & Massagué, J. Metastatic stem cells: sources, niches, and
vital pathways. Cell Stem Cell 14, 306–321 (2014).

3. Hermann, P. C. et al. Distinct populations of cancer stem cells determine tumor
growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1,
313–323 (2007).

4. Pang, R. et al. A subpopulation of CD261 cancer stem cells with metastatic
capacity in human colorectal cancer. Cell Stem Cell 6, 603–615 (2010).

5. Dieter, S. M. et al. Distinct types of tumor-initiating cells form human colon cancer
tumors and metastases. Cell Stem Cell 9, 357–365 (2011).

6. Grigoriadis, A. et al. Establishment of the epithelial-specific transcriptome of
normal and malignant human breast cells based on MPSS and array expression
data. Breast Cancer Res. 8, R56 (2006).

7. Jones, C. et al. Expression profiling of purified normal human luminal and
myoepithelial breast cells: identification of novel prognostic markers for breast
cancer. Cancer Res. 64, 3037–3045 (2004).

8. Kendrick, H. et al. Transcriptome analysis of mammary epithelial subpopulations
identifies novel determinants of lineage commitment and cell fate. BMC Genomics
9, 591 (2008).

9. Raouf, A. et al. Transcriptome analysis of the normal human mammary cell
commitment and differentiation process. Cell Stem Cell 3, 109–118 (2008).

10. Shehata, M. et al. Phenotypic and functional characterisation of the luminal cell
hierarchy of the mammary gland. Breast Cancer Res. 14, R134 (2012).

11. Shackleton, M. et al.Generation of a functional mammary gland from a single stem
cell. Nature 439, 84–88 (2006).

12. Stingl, J.et al. Purification anduniquepropertiesofmammary epithelial stemcells.
Nature 439, 993–997 (2006).

13. Lim, E. et al. Aberrant luminal progenitors as the candidate target population for
basal tumor development in BRCA1 mutation carriers. Nature Med. 15, 907–913
(2009).

14. DeRose, Y. S. et al. Tumor grafts derived from women with breast cancer
authentically reflect tumor pathology, growth, metastasis and disease outcomes.
Nature Med. 17, 1514–1520 (2011).

15. Dent, R. et al. Triple-negative breast cancer: clinical features and patterns of
recurrence. Clin. Cancer Res. 13, 4429–4434 (2007).

16. Malik, N., Canfield, V. A., Beckers, M. C., Gros, P. & Levenson, R. Identification of
the mammalian Na,K-ATPase 3 subunit. J. Biol. Chem. 271, 22754–22758
(1996).

17. Mani, S. A. et al. The epithelial-mesenchymal transition generates cells with
properties of stem cells. Cell 133, 704–715 (2008).

18. Guo,W.et al.SlugandSox9cooperatively determine themammary stemcell state.
Cell 148, 1015–1028 (2012).

19. Landis, M. D., Lehmann, B. D., Pietenpol, J. A. & Chang, J. C. Patient-derived breast
tumor xenografts facilitating personalized cancer therapy. Breast Cancer Res. 15,
201 (2013).

20. Cheung, K. J., Gabrielson, E., Werb, Z. & Ewald, A. J. Collective invasion in breast
cancer requiresaconservedbasal epithelialprogram.Cell155,1639–1651 (2013).

21. Bragado, P. et al. TGF-b2 dictates disseminated tumour cell fate in target organs
throughTGF-b-RIII andp38a/b signalling.NatureCell Biol. 15, 1351–1361 (2013).

22. Kim, R. S. et al. Dormancy signatures and metastasis in estrogen receptor positive
and negative breast cancer. PLoS ONE 7, e35569 (2012).

23. Horiuchi, D. et al. MYC pathway activation in triple-negative breast cancer is
synthetic lethal with CDK inhibition. J. Exp. Med. 209, 679–696 (2012).

24. Huskey, N. E. et al. CDK1 inhibition targets the p53-NOXA-MCL1 axis, selectively
kills embryonic stem cells, and prevents teratoma formation. Stem Cell Reports 4,
374–389 (2015).

Supplementary Information is available in the online version of the paper.

Acknowledgements We thank A. Welm for providing access to PDX tissues developed
by her group, which served as the foundation for this study. We also thank K. Lee,
R. Kumar, A. Le, R. Daneman, J. Stingl and M. Binneweis for comments and technical
contributions. This study was supported by funds from the National Cancer Institute
(CA180039 and CA136717), Stand Up To Cancer/AACR (DT0409), the Era of Hope
Scholar Award (W81XWH-12-1-0272), the Breast Cancer Research Foundation and
the Atwater Foundation, and D. and J. Vander Wall. D.A.L. was supported by a US
Department of Defense Congressionally Directed Medical Research Program
postdoctoral fellowship (11-1-0742), and C.W. is supported by a grant from the
Ministry of Science and Technology, Taiwan (104-2917-I-006-002).

Author Contributions K.T. initiated the PDX models, and along with D.A.L., Y.Y., H.E. and
A.Z. performed transplants and maintained serial passages of PDX models. D.A.L.,
K.D.P., and Y.Y. harvested and analysed PDX tissues. K.D.P. performed histological
analysis of PDX mouse tissues. D.A.L., K.D.P., Y.Y., A.Z. and H.E. performed dinaciclib
treatment experiments. K.K. performed dinaciclib experiments. P.Y. prepared
reduction mammoplasty samples. D.A.L. isolated cells by FACS and performed
single-cell dynamic array experiments. N.R.B. designed algorithms for single-cell qPCR
analyses in R and contributed to multiplex PCR experimental design. D.A.L. and N.R.B.
performed analyses in R. D.A.L. wrote the manuscript, and with K.K. designed figures
and schematics. C.-Y.W. and S.B. performed bioinformatics analyses. All authors
contributed to experimental design and conceivedexperiments.A.G. andZ.W. provided
overall guidance, funding and assisted in manuscript completion.

Author Information Single-cell multiplex qPCR data have been deposited in the Gene
Expression Omnibus under accession number GSE70555.Reprints and permissions
information is available at www.nature.com/reprints. The authors declare no
competing financial interests. Readers are welcome to comment on the online version
of the paper. Correspondence and requests for materials should be addressed to Z.W.
(zena.werb@ucsf.edu) or A.G. (andrei.goga@ucsf.edu).

0 0 M O N T H 2 0 1 5 | V O L 0 0 0 | N A T U R E | 5

LETTER RESEARCH

G2015 Macmillan Publishers Limited. All rights reserved

www.nature.com/doifinder/10.1038/nature15260
www.nature.com/doifinder/10.1038/nature15260
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE70555
www.nature.com/reprints
www.nature.com/doifinder/10.1038/nature15260
www.nature.com/doifinder/10.1038/nature15260
mailto:zena.werb@ucsf.edu
mailto:andrei.goga@ucsf.edu.


METHODS
Cell line and animal experiments. All cell lines used in the study were pre-
validated and grown using standard protocols that can be found on the
American Type Culture Collection. The University of California, San Francisco
Institutional Animal Care and Use Committee (IACUC) reviewed and approved
all animal experiments. PDX tumour tissues were acquired from the laboratory of
A. Welm and serially passaged as ,8 mm3 tumour fragments into the cleared
inguinal fat pads of pre-pubescent NOD/SCID mice following established proto-
cols14. When tumours became palpable, they were calipered weekly to monitor
growth kinetics. Tumour fragments were stored by freezing in 90% FBS and 10%
dimethylsulfoxide (DMSO) in liquid nitrogen. Clinical details of patients used for
generation of each PDX model are detailed elsewhere14. All PDX animals were
euthanized at the endpoint unless otherwise noted, when tumours reached 20–
25 mm. In resection experiments, tumours were surgically removed at 10–12 mm.
Resected animals were replaced in the colony and allowed to grow metastases for
8 weeks, at which time lung tissues were harvested, digested, and analysed by FACS
for human cells.

For orthotopic transplant experiments for functional activity of metastatic cells,
lymph node metastatic cells from animals with ,500 CD2981 metastatic cells in
the lymph nodes were isolated by FACS and pooled from several animals. CD2981

primary tumour cells from matched animals were also isolated by FACS. Sorted
cells were pelleted and resuspended in 1:1 Matrigel plus DMEM/F12 media.
Sample dilutions were injected into cleared mammary fat pads of 3.5-week-old
NOD/SCID mice. Grafts were harvested 4.5 months later when primary tumours
reached 20 mm.
Dinaciclib treatment experiments. Dinaciclib was prepared and administered
according to previously established protocols in mice23,25. Dinaciclib was recon-
stituted in 20% hydroxypropyl b cyclodextrin (HPBCD). Animals were randomly
assigned into treatment or control groups when tumour cells were transplanted,
and mice were analysed using a single-blind design. The drug treatment course
was initiated when tumours became palpable. A total of 49 animals (HCI-001 and
HCI-010) were treated by i.p. injection three times per week at 30 mg kg21 of drug,
or vehicle (HPBCD), a previously established dose in mice25. Animal group size
was chosen by power analysis, using a two-tailed a of 0.05 with 80% power, and the
frequencies of metastasis that we observed in each model (Extended Data Table 1).
Animals were measured by caliper twice weekly to record primary tumour growth.
Mice were euthanized at the conclusion of a 4-week treatment course, or earlier if
their tumours reached the IACUC-established ethical endpoint (20 mm in dia-
meter). Animals that developed adverse effects (for example, .20% weight loss)
were excluded from the study. Statistical significance between drug- and vehicle-
treated groups was examined by two-tailed, unpaired t-tests.
Bioinformatics and computational analysis of microarray data sets. Published
microarray data sets (Gene Expression Omnibus (GEO) accession number
GSE32531) on the PDX models were downloaded from the GEO database14.
Microarray gene expression values were calculated by global median normaliza-
tion and annotated with GeneSpring GX 12.0 software (Agilent Technologies).
Plasma membrane genes highly expressed across all 15 PDX tumour samples and
12 original patient tumour samples included in the study were rank ordered from
highest to lowest expression across all the samples using the GENE-E package26.

The prognostic value of each of the 55 genes characteristic of low-burden
metastatic cells (Extended Data Table 2) was determined by Kaplan–Meier ana-
lysis using KM-plotter online software (http://kmplot.com/analysis/)27. The rela-
tionship of gene expression and distant metastasis-free survival (DMFS)
(n 5 1,610) was evaluated in an integrated multi-study breast cancer microarray
data set containing 13 breast cancer expression profiling data sets from GEO.
Kaplan–Meier estimates of DMFS were calculated by setting the software to look
for the optimal cut-off for separation of patients into high- and low-expressing
groups. The hazard ratio, log-rank P value, and number of patients in each group
are shown on the KM plot for each gene.
Tissue dissociation. All solid tissues, including primary tumour, liver, lungs, lymph
nodes (axillary, brachial, cervical, sciatic and lumbar) and brain were dissociated for
FACS using the same protocol. Briefly, tissues were mechanically chopped with
scalpels, placed in culture medium (DMEM/F12 with 5% FBS, 5mg ml21 insulin
(UCSF Cell Culture Facility), 50 ng ml21 gentamycin (UCSF Cell Culture Facility)
containing 2 mg ml21 collagenase-1 (Sigma). They were then digested for 45 min at
37 uC. The resulting suspensions were resuspended in 2 Uml21 DNase for 3 min at
room temperature, washed and dissociated with 2 ml of 0.05% trypsin/EDTA (UCSF
Cell Culture Facility) for 10 min at 37 uC. Peripheral blood was collected by effusion
with 10 mM EDTA in D-PBS, followed by mixture with 2% dextran in D-PBS for
sedimentation of red blood cells using standard methods. After 1 h, supernatant was
collected and cells were pelleted at 1,500 r.p.m. for 5 min. Bone marrow was collected
by removing all tissue from femur and tibia and flushing marrow with 13 PBS using
a 27G needle. Residual erythrocytes in peripheral blood, lung and tumour samples

were lysed with Red Blood Cell Lysis Buffer for 5 min at room temperature. All
samples not used immediately were filtered through a 70mm filter, and frozen in
DMEM/F12 with 50% serum and 10% DMSO, and stored in liquid N2.

Reduction mammoplasty samples were acquired from the Cooperative Human
Tissue Network (CHTN), a program funded by the National Cancer Institute.
Tissues were washed three to five times with PBSA (13 Dulbecco’s PBS supple-
mented with 200 U ml21 penicillin, 200mg ml21 streptomycin (Invitrogen) and
5mg ml21 Fungizone (Invitrogen)). Tissues were minced into small fragments and
digested overnight in collagenase-I-containing solution as previously described28.
Digested organoids were pelleted in a centrifuge at 100g for 3 min and frozen and
stored in liquid N2 as described earlier.
Flow cytometry. Antibodies for the human antigens CD45 (Alexa-450,
eBioscience), CD31 (Alexa-450, eBioscience), CD298 (PE, Biolegend), EpCAM
(PE or APC, eBioscience), CD49f (APC, eBioscience), CD117/cKit (FITC,
eBioscience), CD24 (APC, eBioscience) and MHC I (APC, eBioscience) were pur-
chased commercially. For mouse antigens, CD45 (FITC, eBioscience), Ter119
(FITC, eBioscience), CD31 (FITC, eBioscience) and MHC I (APC, eBioscience)
were used. All antibodies were validated in previous publications10–13, or in this
study directly (CD298). Antibody staining was performed in DMEM/5% FBS sup-
plemented with penicillin and streptomycin. After 15 min on ice, stained cells were
washed of excess unbound antibodies and resuspended in medium. Flow sorting
was done using a BD FACSAriaII cell sorter (Becton Dickinson), and analysis was
done on an LSRII (Becton Dickinson). Forward-scatter height versus forward-scat-
ter width (FSC-H versus FSC-W) and side-scatter area versus side-scatter width
(SSC-A versus SSC-W) were used to eliminate cell aggregates and ensure single cell
sorting. Dead cells were eliminated by excluding Sytox positive (SYTOX Blue dead
cell stain, Molecular Probes) cells, which increased the efficiency of sorting robust,
live cells for single-cell experiments. Contaminating human or mouse haematopoie-
tic and endothelial cells were excluded by gating out Lin1 (CD45, Ter119, CD31)
cells. In Fig. 2a, Sytox1mLin1 cells were pre-gated out, and the percentages shown
reflect the remaining population. Control mammary: 0.0 6 0.0% hCD2981;
95.1 6 2.0% mMHC I1; 3.0 6 2.1 hCD2982mMHC I2; HCI-001: 77.7 6 11.3%
hCD2981; 18.2 6 8.7% mMHC I1; 0.5 6 0.3 hCD2982mMHC I2; HCI-002:
92.8 6 3.2% hCD2981; 5.8 6 4.0% mMHC I1; 0.3 6 0.2 hCD2982mMHC I2;
HCI-010: 97.1 6 1.0% hCD2981; 2.0 6 0.6% mMHCI1; 0.1 6 0.1 hCD2982

mMHC I2. In single-cell multiplex qPCR experiments where the number of meta-
static cells identified was listed (Extended Data Fig. 2e, #Cells), the entire tissue
sample was run through the flow cytometer. A consistent number of live cells was
found in tissues from each animal. In any case where live cell yields deviated from
the average by more than one standard deviation, mice were excluded from the
study (Supplementary Data 8 shows histograms for cell yields from lung and lymph
nodes). In Extended Data Table 1 and Fig. 4e, animals or tissues were designated
as positive for metastatic cells if.10 hCD2981mLin2 cells were detected in the
entire sample.
Fluidigm dynamic array experiments. Single-cell gene-expression experiments
were performed using Fluidigm’s 96.96 qPCR DynamicArray microfluidic chips.
Single cells were sorted by FACS into individual wells of 96-well PCR plates, using
the FACSAriaII single-cell sorting protocol with specific adjustments (device: 96-
well PCR plate; precision: single-cell; nozzle: 100mm). Experiments were per-
formed according to Fluidigm’s Advanced Development Protocol 41. Each well
of 96-well PCR plates was preloaded with 9ml volume of RT-STA solution: 5ml of
CellsDirect PCR mix (Invitrogen), 0.2ml of SuperScript-III RT/Platinum Taq mix
(Invitrogen), 1.0ml of a mixture of all pooled primer assays (500 nM), and 2.8ml of
DNA suspension buffer (TEKnova). After sorting, PCR plates were frozen
(220 uC) or placed into a thermocycler for combined reverse transcription
(50 uC for 15 min, 95 uC for 2 min) and target-specific amplification (20 cycles;
each cycle: 95 uC for 15 s, 58 uC for 4 min). Technical replicates were not per-
formed, as the manufacturer recommends a greater number of biological repli-
cates in lieu of technical replicates yields more power and better sampling of the
target population. 3.6ml of exonuclease reaction solution (2.52ml H20, 0.36 Exo
reaction buffer, and 0.72ml ExoI, New England BioLabs) was then added to
remove unincorporated primers (37 uC for 30 min, 80 uC for 15 min).
Subsequently, each well was diluted 1:3 with TE buffer (TEKnova). In a separate
plate, a 2.7ml aliquot from each sample well was then mixed with 2.5ml of SsoFast
EvaGreen Supermix with Low Rox (Bio-Rad) and 0.25ml of Fluidigm’s DNA
Binding Dye Sample Loading Reagent. Plates were centrifuged to mix solutions.
In another separate plate, individual primer assay mixes were generated by loading
2.5ml of Assay Loading Reagent (Fluidigm), 2.25ml DNA Suspension Buffer, and
0.25ml of 100mM primer pair mix. Before loading primer assays and sample mixes
into each chip, chips were primed by injecting control line fluid (Fluidigm) and
running the ‘Prime’ program in the IFX Controller HX. After priming, 5ml of each
sample and primer mix were loaded into each well of the chips. Samples and assays
were then mixed in the chip by running the ‘Load Mix’ program in the IFC
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Controller HX. Chips were transferred into the BioMark real-time PCR reader
(Fluidigm) and run according to the manufacturer’s instructions. A list of primer
assays used in this study is provided in Supplementary Table 1. All primer
sequences were acquired through the Harvard Primer bank, and synthesized by
Integrated DNA Technologies. Primer assays were run on Fluidigm’s dynamic
arrays using an iterative approach, where genes that were not informative were
replaced in subsequent experiments. Thorough technical evaluations of the micro-
fluidics array technology, limits of detection, and efficiency of multiplex PCR in
this platform have been reported by Fluidigm and several independent reports29–31.
Computational analysis, display, and statistical assessment of single-cell PCR
data sets. All single-cell PCR data were analysed using Fluidigm’s Real-time PCR
analysis software, using the Linear (Derivative) and User (Detectors) settings to
generate Ct values for each gene. Ct values were further processed in the R stat-
istical language32, using algorithms we generated. All code is provided in
Supplementary Information, and published in GitHub (https://github.com/) for
upload into R. Single-cell multiplex qPCR data are available at the NCBI GEO
database (accession GSE70555). Over 20 mice were analysed, but data from 12
PDX mice are included (in which a similar gene set was analysed). Mammary
epithelial cells from three reduction mammoplasty patients were also analysed. In
total, 268 mammary cells from reduction mammoplasties, and 441 metastatic and
523 primary tumour cells from PDX mice were analysed.

In normal mammary cell experiments, Ct values were normalized by sub-
tracting the average value of the basal/stem-cell population on a per-gene, per-
array basis to correct for batch-to-batch differences in reverse transcription, pre-
amplification, and real-time PCR. In PDX experiments, Ct values were normalized
by subtracting the average primary tumour expression from the same individual
animal on a per-gene basis, to identify conserved differences in gene expression in
metastatic cells relative to the primary tumour cells they derive from, in addition to
correction of batch-to-batch differences. Normalization using housekeeping genes
was not performed, as it is not recommended for single-cell qPCR33. Normalized
Ct values were converted to relative log2 expression values simply through mul-
tiplication by 21. Low-quality samples were identified and removed from further
analysis in most experiments if less than 80% of the assayed genes amplified. Gene
expression data were displayed by PCA, unsupervised hierarchical clustering,
supervised clustering, and box plots. Unsupervised hierarchical clustering was
performed on both metastatic cells and genes based on Pearson’s correlation
distance metric and average linkage, after z-score standardization of the log2

expression values for each gene across all samples (Fig. 3c). In all other PDX
heatmaps, genes were not clustered, but instead the gene order was maintained
for consistency. For all heatmaps, the limits of the blue/red colour scale are set to
span 90% of the data based on a normal distribution, to prevent outliers from
compressing the colours of the majority of the data. For PCA, in which missing
data are not easily accommodated, a lower limit of detection approach was taken,
in which failed reactions were set to a log2 expression value one lower than the
minimum observed value across all samples for each gene separately.

To identify gene expression differences between predefined populations, several
statistical tests were performed. For normal mammary cell experiments, we first
performed three-group comparisons between basal/stem, luminal, and luminal pro-
genitor cells (both parametric: analysis of variance (ANOVA); and non-parametric:
Kruskal–Wallis). This yielded a list of 49 differentially expressed genes (Fig. 1c and
Supplementary Table 2). To determine which genes were characteristic of each
population, we subsequently performed pair-wise tests (parametric: moderated t-test;
and non-parametric: Mann–Whitney U test). In metastatic cell versus primary
tumour cell experiments, only pair-wise comparisons were performed. Three-group
comparisons were performed to compare lung metastatic cells from the three PDX
models, and five-group comparisons were performed to compare metastatic cells
from each tissue. In these analyses, ANOVA and Kruskal–Wallis group tests were
performed followed by post-hoc pairwise analyses using Tukey and Chi-squared
tests. In low- versus high-burden metastatic cell comparisons, low burden was
defined as ,250 human cells detected in the entire tissue, and high burden was
defined as .1,000 cells. Intermediate burden was defined as in between 250 and
1,000 human cells detected. As we were only analysing assays for which at least one
cell yielded amplification, undetectable amplification represented non-expression
rather than technical error in the PCR reaction. To capture non-expression in the

statistical tests, failed reactions were set to a value 0.01 lower than the lowest observed
value across all samples for each gene separately. For the non-parametric tests
described earlier, the specific value chosen is not important, while for the parametric
tests, this method is comparable to using a lower limit of detection. Our algorithm
selected the most appropriate test from which to report a P value based on the type of
data observed for that gene (non-parametric if.50% of samples failed for either
group, parametric otherwise). This criterion was chosen in an attempt to prevent a
high proportion of failed values masking group differences. All P values were also
adjusted for the fact that many genes were being simultaneously analysed by con-
trolling the false discovery rate (FDR) with the Benjamini–Hochberg method. To
identify basal/stem-cell-characteristic genes, we compared basal/stem (B) to both
luminal (L) and luminal progenitor cells (LP) (that is, B versus (L and LP)).
Luminal genes were identified by performing L versus B, and luminal progenitor
genes by performing LP versus L (since they are a subset of the L lineage). Log-fold
changes were computed as a difference between the mean of the log2-normalized
expression values for one group versus the mean of the values for the other group;
failed reactions were first replaced using the lower limit of detection approach
described above.

Enrichment analysis of Biological Process gene ontology terms was performed
using the GOstats R package, using the conditional parameter. This was done to
identify pathways that were more represented in the set of significantly differenti-
ally expressed genes than would be expected by chance alone.
Histological and immunofluorescent analysis. Tissues were fixed overnight in
4% paraformaldehyde and processed for paraffin embedding. For histological
analysis, sections were stained with haematoxylin and eosin using standard meth-
ods. Immunofluorescent staining was performed on lung tissues with low and high
metastatic burden. We defined low burden as fewer than 10 small detectable
lesions, containing fewer than 20 cells each. High burden was defined as greater
than 25 lesions, with large numbers of cells (at least 1,000 in total). Metastatic
lesions were identified by the size of the nuclei, as tumour cell nuclei were 2–3
times larger than surrounding nuclei in the lung. Metastatic lesions were also often
encircled by basement membrane and stroma, making them easily identifiable.
Immunostaining on paraffin-embedded tissue sections was performed using
standard protocols, using citrate buffer (pH 6.0) and heating in a pressure cooker
for 8 min. MUC1 (Sigma, HPA008855, 1:100) and KRT5 (Biolegend, PRB-160P,
1:1,000) were stained using a three-step technique, where primary antibodies were
incubated overnight, followed by 1 h incubations with a biotinylated anti-rabbit
secondary (DAKO, 1:500) and subsequently a Streptavidin Alexa-568 (Invitrogen,
1:1,000). MYC (abcam, ab32072,1:100) and phospho-histone H3 (Cell Signaling
Technology, 1:100) were identified using a two-step technique, where overnight
primary antibody stains were followed by a 1 h incubation with a goat anti-rabbit
Alexa-568 secondary (Molecular Probes, 1:1,000). The number of positive nuclei
was counted in several fields for each group (tumour, high burden, and low
burden), and significance was calculated by single-factor ANOVA and pair-wise
t-tests assuming equal variance.
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